Learning Global Pairwise Interactions with **Bayesian Neural Networks**

Tianyu Cui Pekka Marttinen Samuel Kaski

Finnish Center for Artificial Intelligence; Department of Computer Science, Aalto University

Background

Estimating interactions between features, and the uncertainties of the interactions, is a challenge common to many data science tasks. For a simplest example could be:

 $y = \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + e.$

Existing methods include two following approaches: 1) Conducting tests for each combination, such as ANOVA [2]; 2) 'White-box' machine learning models, such as Lasso [1]. The first approach lacks statistical power due to multiple testing. The second approach has to restrict the functional form of interactions.

Detecting Interactions

Input Hessian (Hessian of $g^{\mathbf{W}}(\mathbf{x})$ w.r.t. the input) is only a **local** analogy to β_{12} for non-multiplicative interaction. **Global** interaction effects can be estimated by averaging local effects.

Existing approaches:

Question: How to estimate interaction effects with quantified uncertainties without any functional form ?

Proposed Approach

unlimited functional forms? \Rightarrow Neural network uncertainty estimation? \Rightarrow Bayesian interaction effects? Hessian \Rightarrow

An intuitive approach with two steps (modeling and detecting): 1. Train a Bayesian Neural Network on the data of interests; 2. Find encoded interactions by estimating input Hessian of NN.

$$\operatorname{EAH}_{g}^{i,j}(\mathbf{W}) = \mathbb{E}_{p(\mathbf{x})} \left[\left| \frac{\partial^2 g^{\mathbf{W}}(\mathbf{x})}{\partial x_i \partial x_j} \right| \right], \operatorname{AEH}_{g}^{i,j}(\mathbf{W}) = \left| \mathbb{E}_{p(\mathbf{x})} \left[\frac{\partial^2 g^{\mathbf{W}}(\mathbf{x})}{\partial x_i \partial x_j} \right] \right]$$

where $p(\mathbf{x})$ is the empirical distribution of \mathbf{x} . EAH aggregates both signal and noise \Rightarrow High FPR, but low FNR; AEH averages both signal and noise \Rightarrow High FNR, but low FPR.

Our approach: Group Expected Hessian (GEH):

We cluster $dom(\mathbf{x})$ into *M* subregions, and calculate AEH for each subregion, then compute their weighted average. By tuning M, we trade-off between EAH and AEH. For M groups, M-GEH_a^{i,j} is

$$M-\text{GEH}_{g}^{i,j}(\mathbf{W}) = \sum_{m=1}^{M} \frac{|A_{m}|}{\sum_{k=1}^{M} |A_{k}|} \Big| \mathbb{E}_{p(\mathbf{x}|\mathbf{x}\in A_{m})} \Big[\frac{\partial^{2}g^{\mathbf{W}}(\mathbf{x})}{\partial x_{i}\partial x_{j}} \Big] \Big|.$$

When $M \to 1$, M-GEH \to AEH; $M \to N$, M-GEH \to EAH.

Optimal M: the smallest that can capture rich enough interactions. $\Delta_M^2 = \sum_{i=1}^{n} (w_M(i) - w_{M-1}(i))^2 (\pi_M(i) - \pi_{M-1}(i))^2.$

Modeling Interactions and their Uncertainty

Instead of using a single Bayesian MLP [3], we model the main effects by a linear regression separately from the interactions.

We use concrete dropout as $g^{\mathbf{W}}(\mathbf{x})$ by maximizing: $q_{\theta}(\mathbf{W}) \log p(\mathbf{Y}|\beta^{T}\mathbf{X} + g^{\mathbf{w}}(\mathbf{X})) d\mathbf{W} - KL(q_{\theta}(\mathbf{W})||p(\mathbf{W})),$

i=1We compare two interaction effect vectors corresponding to consecutive numbers of clusters. We plotted values of Δ_M^2 as a function of M, and choose M when Δ_M^2 approximately converges to 0.

Experiments on Simulated Data

We use simulator:
$$y_i = \sum_{j=1}^{8} \beta_j^m x_j + \sum_{k=1}^{7} \beta_k^i h_k(x_k, x_{k+1}) + \epsilon_k$$

where $q_{\theta}(\mathbf{W}) = q_{\mathbf{p},\mathbf{M}}(\mathbf{W}) = \prod_{l=1}^{L} \prod_{k=1}^{K_l} \mathbf{m}_{l,k} \text{Bernoulli}(1 - p_{l,k}),$ $p_{l,k}$ is the dropout probability for node k in layer l, and $\mathbf{m}_{l,k}$ is a vector of outgoing weights from node k in layer l. We learn dropout probability for *each node* instead of *each layer* to select important features (with low dropout probabilities) as an ARD prior.

By using such trick, we can significantly reduce the size of BNN, which improves the training.

 Δ_M^2 in simulation data

