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Background

Estimating interactions between features, and the uncertainties of
the interactions, is a challenge common to many data science tasks.
For a simplest example could be:

y = β1x1 + β2x2 + β12x1x2 + e.

Existing methods include two following approaches:
1) Conducting tests for each combination, such as ANOVA [2];
2) ’White-box’ machine learning models, such as Lasso [1].
The first approach lacks statistical power due to multiple testing. The
second approach has to restrict the functional form of interactions.

Question: How to estimate interaction effects with
quantified uncertainties without any functional form ?

Proposed Approach

unlimited functional forms? ⇒ Neural network
uncertainty estimation? ⇒ Bayesian

interaction effects? ⇒ Hessian

An intuitive approach with two steps (modeling and detecting):
1. Train a Bayesian Neural Network on the data of interests;
2. Find encoded interactions by estimating input Hessian of NN.

Modeling Interactions and their Uncertainty

Instead of using a single Bayesian MLP [3], we model the main effects
by a linear regression separately from the interactions.
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We use concrete dropout as gW(x) by maximizing:∫
qθ(W) log p(Y|βTX + gw(X))dW− KL(qθ(W)||p(W)),

where qθ(W) = qp,M(W) =
∏L

l=1
∏Kl

k=1 ml,kBernoulli(1 − pl,k),
pl,k is the dropout probability for node k in layer l, and ml,k is
a vector of outgoing weights from node k in layer l. We learn
dropout probability for each node instead of each layer to select
important features (with low dropout probabilities) as an ARD prior.

By using such trick, we can significantly reduce the size of
BNN, which improves the training.

Detecting Interactions

Input Hessian (Hessian of gW(x) w.r.t. the input) is only a local
analogy to β12 for non-multiplicative interaction. Global interaction
effects can be estimated by averaging local effects.

Existing approaches:

EAHi,j
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]∣∣∣.
where p(x) is the empirical distribution of x.
EAH aggregates both signal and noise ⇒ High FPR, but low FNR;
AEH averages both signal and noise ⇒ High FNR, but low FPR.

Our approach: Group Expected Hessian (GEH):
We cluster dom(x) into M subregions, and calculate AEH for each
subregion, then compute their weighted average. By tuning M , we
trade-off between EAH and AEH. For M groups, M-GEHi,j

g is

M-GEHi,j
g (W) =

M∑
m=1

|Am|∑M
k=1 |Ak|

∣∣∣Ep(x|x∈Am)

[∂2gW(x)
∂xi∂xj

]∣∣∣.
When M → 1, M-GEH→ AEH; M → N , M-GEH→ EAH.

Optimal M : the smallest that can capture rich enough interactions.

∆2
M =

L∑
i=1

(wM(i)− wM−1(i))2(πM(i)− πM−1(i))2.

We compare two interaction effect vectors corresponding to consecu-
tive numbers of clusters. We plotted values of ∆2

M as a function of
M , and choose M when ∆2

M approximately converges to 0.

Experiments on Simulated Data

We use simulator: yi =
∑8

j=1 β
m
j xj +

∑7
k=1 β

i
khk(xk, xk+1) + ε.
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h6 = log(x26 + x27)
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